Review from Tuesday



Scheme, and probably all of the languages you know, uses lexical or
static scoping. The value of a free variable in a lambda expression
comes form the bindings that were in place when the function was
defined or created.

With dynamic scoping free variables get their values from the
environment in place when the function is called.




Consider this expression:

(let ([x 10])
(let([f (lambda (y) (* x y))])
(let ([x 100])

(f 3))))



What does
(let ([x 10])

(let([f (lambda (y) (* x y))])
(let ([x 100])

(f 3))))

evaluate to under dynamic scoping?
A. 300
B. 30

C. 1000
D. An error



What does
(let ([x 10])

(let([f (lambda (y) (* x y))])
(let ([x 100])

(f 3))))

evaluate to under dynamic scoping?
Answer A: 300



What does
(let ([x 10])
(let([f (lambda (y) (* x y))])
(let ([x 100])

(f 3))))

evaluate to under static scoping?
A. 300
B. 30

C. 1000
D. An error



What does
(let ([x 10])

(let([f (lambda (y) (* x y))])
(let ([x 100])

(f 3))))

evaluate to under static scoping?

Answer B:30



What about?

(let ([x 10])
(let([f (lambda (x)
(lambda (y) (* x y)))])
(let ([x 100])
(let ([g (f 5)])
(g 3))

That evaluates to 15 under either scoping mechanism.



